Homework 1 due Wednsday, August 29

Recall:

- For a vector $\mathbf{x} = (x_1, x_2, ..., x_N)^T$ in \mathbb{R}^N , $\|\mathbf{x}\|^2 = \sum_{i=1}^N x_i^2 = (\mathbf{x}^T \mathbf{x})$.
- The inner (or dot) product of two vectors **x**, **y** in \mathbb{R}^N is $\mathbf{x}^T \mathbf{y} = \sum_{i=1}^N x_i y_i$ and is also written as $\mathbf{x} \cdot \mathbf{y}$ or $\langle \mathbf{x}, \mathbf{y} \rangle$.
- For vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^N we write $\mathbf{x} \perp \mathbf{y}$ if $\mathbf{x}^T \mathbf{y} = 0$.
- A subspace of a vector space is a subset of the vector space that is closed under vector addition and scalar multiplication and, hence, closed under finite linear combinations.
- If W is a subset of \mathbb{R}^N , then the set W^{\perp} is the set of all vectors $\mathbf{u} \in \mathbb{R}^N$ such that $\mathbf{u} \perp \mathbf{w}$ for all $\mathbf{w} \in W$.
- Let **A** be an $m \times n$ matrix. Then the range and kernel of **A** are defined by

range
$$
\mathbf{A} := \{ \mathbf{A}\beta \mid \beta \in \mathbb{R}^n \}
$$
 and
ker $\mathbf{A} := \{ \beta \in \mathbb{R}^n \mid \mathbf{A}\beta = 0 \}.$

Problems:

- (1) Show that $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ if and only if $\mathbf{x} \perp \mathbf{y}$. Hint: $\|\mathbf{x} + \mathbf{y}\|^2 =$ $(\mathbf{x} + \mathbf{y})^T (\mathbf{x} + \mathbf{y}).$
- (2) Let **A** be an $m \times n$ matrix. Show that range **A** is a subspace of \mathbb{R}^m and ker **A** is a subspace of \mathbb{R}^n .
- (3) Let W be a subset of vectors in \mathbb{R}^m . Show that W^{\perp} is a subspace of \mathbb{R}^m (regardless of whether W is a subspace).
- (4) Let **A** be an $m \times n$ matrix. Show ker $\mathbf{A}^T = (\text{range } \mathbf{A})^{\perp}$.
- (5) Let **X** be an $N \times p$ matrix. Show that a vector $\hat{\beta} \in \mathbb{R}^{p+1}$ satisfies the normal equations $\mathbf{X}^T(\mathbf{y}-\mathbf{X}\hat{\beta})=0$ if and only if $(\mathbf{y}-\mathbf{X}\hat{\beta}) \in (\text{range }\mathbf{X})^{\perp}$.
- (6) Suppose $\hat{\beta} \in \mathbb{R}^{p+1}$ satisfies the normal equations $\mathbf{X}^T(\mathbf{y} \mathbf{X}\hat{\beta}) = 0$. Show

$$
RSS(\hat{\beta}) = \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2 \le \|\mathbf{y} - \mathbf{X}\beta\|^2 = RSS(\beta)
$$

for any $\beta \in \mathbb{R}^p$. Hint: Consider

$$
\|\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\|^2 = \|(\mathbf{y}-\mathbf{X}\hat{\boldsymbol{\beta}})+(\mathbf{X}\hat{\boldsymbol{\beta}}-\mathbf{X}\boldsymbol{\beta})\|^2.
$$

Explain why $\hat{\beta} = \arg\min_{\beta} \text{RSS}(\beta)$.

- (7) Problem 2.1 from text. Hint: $||t_k \hat{y}||^2 = 1 2\hat{y}_k + ||\hat{y}||^2$. Is the assumption that the elements of \hat{y} sum to one relevant?
- (8) A collection of vectors $\{u_1, u_2, \ldots, u_n\} \subset \mathbb{R}^m$ is an *orthonormal system* if $u_i^T u_j =$ $\delta_{i,j}$ where $\delta_{i,j} = 1$ if $i = j$ and $\delta_{i,j} = 0$ otherwise. Let $U = [u_1u_2 \cdots u_n]$ be the $m \times n$ matrix whose *i*-th column is u_i for $i = 1, 2, ..., n$. Show that $\{u_1, u_2, ..., u_n\}$ is an orthonormal system if and only if $U^T U = I_n$ where I_n denotes the $n \times n$ identity matrix.
- (9) Let $\{u_1, u_2, \ldots, u_n\} \subset \mathbb{R}^m$ be an orthonormal system and let $U = [u_1 u_2 \cdots u_n]$ as in the previous problem. For $x \in \mathbb{R}^m$, let $P_U x := (UU^T)x$ (note usually $UU^T \neq U^TU$) and $Q_U x := x - P_U x = (I_m - P_U)x$. Show
	- for any $x \in \mathbb{R}^m$ that $P_U x \in \text{range } U$ and $Q_U x \in (\text{range } U)^{\perp}$.
	- $P_U x$ is the unique closest point in range U to x; i.e., $||x P_U x|| < ||x u||$ for any $u \in \text{range } U$ different from $P_U x$.