Homework 1 due Wednsday, August 29

Recall:

- For a vector **x** = (x₁, x₂,..., x_N)^T in ℝ^N, ||**x**||² = ∑^N_{i=1} x_i² = (**x**^T**x**).
 The inner (or dot) product of two vectors **x**, **y** in ℝ^N is **x**^T**y** = ∑^N_{i=1} x_iy_i and is also written as $\mathbf{x} \cdot \mathbf{y}$ or $\langle \mathbf{x}, \mathbf{y} \rangle$.
- For vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^N we write $\mathbf{x} \perp \mathbf{y}$ if $\mathbf{x}^T \mathbf{y} = 0$.
- A subspace of a vector space is a subset of the vector space that is closed under vector addition and scalar multiplication and, hence, closed under finite linear combinations.
- If W is a subset of \mathbb{R}^N , then the set W^{\perp} is the set of all vectors $\mathbf{u} \in \mathbb{R}^N$ such that $\mathbf{u} \perp \mathbf{w}$ for all $\mathbf{w} \in W$.
- Let **A** be an $m \times n$ matrix. Then the range and kernel of **A** are defined by

range
$$\mathbf{A} := \{\mathbf{A}\beta \mid \beta \in \mathbb{R}^n\}$$
 and
ker $\mathbf{A} := \{\beta \in \mathbb{R}^n \mid \mathbf{A}\beta = 0\}.$

Problems:

- (1) Show that $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ if and only if $\mathbf{x} \perp \mathbf{y}$. Hint: $\|\mathbf{x} + \mathbf{y}\|^2 =$ $(\mathbf{x} + \mathbf{y})^T (\mathbf{x} + \mathbf{y}).$
- (2) Let **A** be an $m \times n$ matrix. Show that range **A** is a subspace of \mathbb{R}^m and ker **A** is a subspace of \mathbb{R}^n .
- (3) Let W be a subset of vectors in \mathbb{R}^m . Show that W^{\perp} is a subspace of \mathbb{R}^m (regardless of whether W is a subspace).
- (4) Let **A** be an $m \times n$ matrix. Show ker $\mathbf{A}^T = (\operatorname{range} \mathbf{A})^{\perp}$.
- (5) Let **X** be an $N \times p$ matrix. Show that a vector $\hat{\beta} \in \mathbb{R}^{p+1}$ satisfies the normal equations $\mathbf{X}^T(\mathbf{y} - \mathbf{X}\hat{\beta}) = 0$ if and only if $(\mathbf{y} - \mathbf{X}\hat{\beta}) \in (\operatorname{range} \mathbf{X})^{\perp}$.
- (6) Suppose $\hat{\beta} \in \mathbb{R}^{p+1}$ satisfies the normal equations $\mathbf{X}^T(\mathbf{y} \mathbf{X}\hat{\beta}) = 0$. Show

$$RSS(\hat{\beta}) = \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2 \le \|\mathbf{y} - \mathbf{X}\beta\|^2 = RSS(\beta)$$

for any $\beta \in \mathbb{R}^p$. Hint: Consider

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 = \|(\mathbf{y} - \mathbf{X}\hat{\beta}) + (\mathbf{X}\hat{\beta} - \mathbf{X}\beta)\|^2.$$

Explain why $\hat{\beta} = \operatorname{argmin}_{\beta} \operatorname{RSS}(\beta)$.

- (7) Problem 2.1 from text. Hint: $||t_k \hat{y}||^2 = 1 2\hat{y}_k + ||\hat{y}||^2$. Is the assumption that the elements of \hat{y} sum to one relevant?
- (8) A collection of vectors $\{u_1, u_2, \ldots, u_n\} \subset \mathbb{R}^m$ is an orthonormal system if $u_i^T u_j =$ $\delta_{i,j}$ where $\delta_{i,j} = 1$ if i = j and $\delta_{i,j} = 0$ otherwise. Let $U = [u_1 u_2 \cdots u_n]$ be the $m \times n$ matrix whose *i*-th column is u_i for i = 1, 2, ..., n. Show that $\{u_1, u_2, ..., u_n\}$ is an orthonormal system if and only if $U^T U = I_n$ where I_n denotes the $n \times n$ identity matrix.

- (9) Let {u₁, u₂,..., u_n} ⊂ ℝ^m be an orthonormal system and let U = [u₁u₂...u_n] as in the previous problem. For x ∈ ℝ^m, let P_Ux := (UU^T)x (note usually UU^T ≠ U^TU) and Q_Ux := x P_Ux = (I_m P_U)x. Show
 for any x ∈ ℝ^m that P_Ux ∈ range U and Q_Ux ∈ (range U)[⊥].
 P_Ux is the unique closest point in range U to x; i.e., ||x P_Ux|| < ||x u|| for

 - any $u \in \operatorname{range} U$ different from $P_U x$.